Multimedia Object Modelling and Storage Allocation Strategies for
Heterogeneous Parallel Access Storage Devices in Real Time
Multimedia Computing Systems

C. Y. Roger Chen,

Dept. of Elect. and Comput. Eng.,
Syracuse University,
Syracuse, NY 13244.

Abstract

The improvements in disk speeds have not kept up
with tmprovements in processor and memory speeds.
Conventional storage techniques, in the face of multi-
media data, are inefficient and/or inadequate. Here,
an efficient multimedia object allocation strategy is
presented. We describe a multimedia object model, the
object and storage device characteristics, and the frag-
mentation strategy. A bipartite graph approach is used
for mapping fragments to storage devices and a cost
function is used to determine an efficient allocation of
an object and to balance the loads on the devices.

Keywords: bipartite graphs, bipartite matching, ef-
ficient allocation, fragmentation, multimedia, storage
allocation.

1 Introduction

The rapid advances in the technology of display de-
vices, computers, networks, storage devices, and soft-
ware engineering have pushed the emerging multime-
dia applications into becoming one of the most im-
portant and promising research areas. Multimedia in-
formation processing encompasses the integrated gen-
eration, representation, processing, storage, and dis-
semination of independent machine processable infor-
mation expressed in multifarious time dependent and
independent media. A unique feature of multimedia
is the highly diversified media types and file sizes. In
order to avoid dealing with the heterogeneity of mul-
timedia data, multimedia applications are usually de-
veloped using an object-oriented approach, where each
object represents a file of video, audio, image, graph-
ics, text, etc; or a combination of them. Moreover,
it is usually required to integrate or combine multiple
objects of various media types into multiple-level com-
plex objects. By using the object-oriented approach,

Kingsley C. Nwosu,
IBM POWER Parallel Systems,
MS/992, Neighborhood Rd.,
Kingston, NY 12401.

P. Bruce Berra,
CASE Center,
Syracuse University,
Syracuse, NY, 13244.

multimedia data can be processed and manipulated by
users in a universal way, regardless of the media types
and sizes of objects. However, from a system’s point
of view, many problems arise in supporting such an
object-oriented multimedia system. Among the prob-
lems, a most serious one is related to the storage. This
is due to the fact that processor speed, memory speed,
and memory size have grown exponentially over the
past few years [1][2], while disk speeds have improved
at a far slower rate. Consequently, the speed of the
disk rather than the speed of the CPU’s is the limit-
ing factor in many applications. For real-time infor-
mation retrieval and presentation, it is imperative that
data, for a given medium, be retrievable at some given
rate. The rates for some media are very high for cur-
rent storage devices. The most conspicuous of these
is in the area of digital video. For example, the video
data object based on the NTSCstandard requires that
video data be retrievable at a rate of 45 Mbits/sec.
However, the peak speed of a magnetic disk drive is
about 10 Mbits/sec. and CD-ROMs operate at 1.2
Mbits/sec. To meet the bandwidth requirement of a
full-motion video file, it is clear that the file has to be
spilt into multiple sub-files, stored in different disks;
when needed, an interleaving technique will be per-
formed to combine the multiple data streams into a
single data stream and then present it to the user.

Conventional allocation techniques (such as data
stripping/de-clustering [3][4][5] and data contigu-
ity /clustering [6][7][8]) are developed mainly for text
and numeric files, which although can be different in
sizes, are more or less on the same order. Unfortu-
nately, when applied to multimedia applications, the
conventional techniques are inadequate and inefficient.
Several file system level approaches [9][10] have been
proposed and utilized; however, they do not encom-
pass the gamut of multimedia types and are mostly
for continuous media types (digital audio and video)
without addressing the storage allocation with empha-

Figure 2: An example of object splitting.

3 Multimedia object/storage charac-
teristics and problem formulation

The jth DE in a composite object O is denoted as
oj. Each DE is associated with a frequency distribu-
tion. This frequency distribution represents the rela-
tive probability that a given DE will be requested for
retrieval. Each class-one DE, o;, has an ezpected re-
trieval rate. This rate represents the minimum number
of bytes of o; that should be retrieved per unit time
in order to achieve its real-time requirements. Each
class-three DE, o, is associated with a degree of paral-
lelism which indicates the degree of concurrent access
to the DE that may be helpful for computations for
either multi-processors or vector processors.

Like the multimedia objects, the kth storage de-
vice is denoted as Sg, its bandwidth as BW (S), total
amount of space already allocated as S}, and the free

space as S]{. The total number of storage devices is
represented by m. Since we are dealing with a het-
erogeneous environment where the computing system
comprises different types of storage devices with dif-
ferent characteristics, the differing characteristic that
is of paramount importance to us is the bandwidth of
a storage device. We group related devices together
based on their bandwidths into @', g2, ..., p#, where
w1 is the number of different bandwidths in the sys-
tem and the bandwidth of each storage device in g’
is BW(p'). We denote the kth AU of o; as a;j; and
the total number of AUs in o; as «;. Consequently,
the storage allocation problem is formulated as fol-
lows: (1) Given a composite multimedia object, how
can one decompose the DEs to build the AUs such
that the allocation of the AUs achieve the real time
requirements? (2) Given a list of AUs produced from
the fragmentation strategy, how does one define the
allocation process and AU allocatability? (3) Having
determined the storage devices to which an AU is al-

locatable, what criteria are necessary and sufficient in
determining the most efficient storage device to store
an AU? (4) Given an allocation strategy, how can one
demonstrate that it fairly and sufficiently balances the
loads among the storage devices?

4 Problem and allocation analysis

Having defined the problem, it is important that
we discuss the vital decisions that must be made to
address the facets of the allocation process. Each al-
location process comprises a composite object with its
associated DEs. The storable elements are the DEs.
A composite object is dynamically created and stored
in the system with respect to the current status of the
storage devices. For an allocation process, all the DEs
of a composite object are considered simultaneously.
Since the most common operation during the alloca-
tion process is the determination of the mappings of
AUs to storage devices, we denote the fact that AU a
is mapped to Sy, as a = Sg.

4.1 Intra DE allocation

The intra DE allocation stipulates the allocation
policy that must exist when allocating the AUs of a
DE. In the case of a class-one or class-three DE, it
is imperative that each of its AUs be stored in a dif-
ferent storage device in order to achieve the expected
retrieval rate or degree of parallelism. Therefore, if
0; 1s a class-one or class-three DE, then the intra DE
allocation states that

Vi=1,a; if a; 1 = Sh then Yy—1 o, Aa; 4 such that
aig S (k#g)and (1<h<m).

4.2 Intra complex object allocation

As is prevalent in most complex object oriented sys-
tems, users or applications may need to access all the
data associated with a complex object concurrently.
In that case, therefore, it becomes necessary that all
the DEs of a complex object be stored in such a way
that all of its data can be retrieved concurrently. We
must, therefore, allocate each AU of a complex object
to a different storage device. Therefore, if o01,...,0;
are the DEs of a complex object, then the intra com-
plex object allocation states that

V:cl:l,j V;(,'Q:lyazl lf Cl;vlyl‘2 I: Sh then
Ves=1j Yoi=1,0., Hlzy e, such that
Ags,z4q IZSh; ($37ﬁl’1,1§h§m)

4.3 Inter composite object allocation

Another access situation that we must consider is
when the access crosses multiple composite objects.
In an environment with a limitless number of storage
devices, we can afford to store every AU in a different
storage device. However, that situation is unrealistic.
We, sometimes, expect the situation depicted in Fig-
ure 3 to occur where composite objects O1 and O2
share O1’s 02. For allocation purposes, we logically
think of shared DEs as, physically, belonging to each
of the composite object. For example, using Figure
3, if O1 were allocated first, then none of O2’s AUs
should be allocated in the same device with O1’s 02.

Figure 3: An example of object sharing.

5 Fragmentation strategies

For class-one DEs, we have to decompose their data
into fragments that foster parallel reads to achieve
their expected retrieval rates. In order to obtain these
fragments, we have to determine the degree of decom-
position of a given DE. We need to compute the num-
ber of storage devices that can be accessed in parallel
to satisfy the retrievability requirement. A DE’s Stor-
age Set () is the set of the number of storage devices
needed to achieve its expected retrieval rate based on
the amount of data that can be retrieved from each
storage device per unit time (i.e., bandwidth) in paral-
lel. If we have a homogeneous configuration of storage
devices, then the computation of the number of stor-
age devices needed is straightforward since all of the
storage devices have the same bandwidth. In the case
of heterogeneous storage devices, we have to consider
different storage devices with different bandwidths.
So we are forced to consider combinations of differ-
ent storage devices with different bandwidths. Con-
sequently, a DE can have multiple storage sets. An
element of a storage set indicates the possible number
of storage devices for one or more device clusters that
is necessary to achieve the real time requirement of a
DE. It is obvious that the number of sets in a storage
set could become very large. As a result, some con-

straints, as described below, are utilized to minimize
the size of a storage set. To that end, therefore, the
number of sets in a DE’s storage set is reduced to at
most 2% — 1. Let xx = {y*,¥%, ...} be the kth storage
set of o; where y' is the number of storage devices from
o' needed to achieve the expected retrieval rate. For
each combination of device clusters that form a stor-
age set, each cluster must be represented by at least
one storage device. The amount of data retrievable
from the storage devices of a storage set must not be
less than the expected retrieval rate or degree of par-
allelism, but should exceed that value with minimum
value. The storage device clusters are arranged in or-
der of decreasing bandwidths. The number of storage
devices per device cluster in a storage set decreases
with increasing bandwidth, when applicable. In the
rest of the paper, when necessary, the expected re-
trieval rate of a class-one DE o; is represented as ;.
For example, given 3; and x = {y',y? y*} then the
following conditions must hold:

L. BW(p') > BW(p*) > BW(p°),

2.yt <y <P

3. WBW(p') +y*BW(p*) +y* BW(p®)] > B, and

(a) [(y' — DBW(p') + ¢*BW(p*) +
y>BW (p°)] < B,

(b) [y'BW(p 1) + (¥ - 1)BW(p®) +
y>BW (p°)] < 6,

(c) [y'BW(p 1) + ¥BW(p’) + (¥ -
DBW (p°)] < ;.

If any of the conditions above is violated, then the cor-
responding storage set is invalid. The above conditions
are equivalent to solving the integer linear program-
ming problem:

y'BW(p') + y*BW(p*) + y° BW (p°
v <yt <yt P> 0.

) > B;,

An i with | xx |1 = g is acceptable if

(1) Y24y <m, and

(2) Vi=1, ¥ < |9 |.

For example, consider a class-one DE of size
120K B and bandwidth requirement of 60 K B/s, given
that pl = {51,52,53}, 92 = {54,55}, 93 =
{Se6, 57,58}, BW(p') = 30, BW(p?) = 20, and
BW (p?) = 10. The
sets of the combinations of clusters of storage devices

are {p1}, {p2}, {ps}, {p1,02}, {p1, 03}, {92 ps},
and {p1,p2,p3}. The valid storage sets are x; =

1| A | — the number of elements in set A

{Q}a X2 {3}a X3 {6}: X4
{1,3}, x6 = {2,2}, and x7 = {1, 1,1}.

Obviously, x2, and x3 are not acceptable. Further-
more, without the constraints discussed above, for ex-
ample, it is evident that given {ps,ps}, the storage
sets {3,0},{1,4},{0,6},{2, 3}, and {1,5} can achieve
the real time requirements. However, applying the
constraints limits the option to {2,2}. If none of the
storage sets of a DE is acceptable, then we can not
allocate the DE. When that happens, a message may
be sent to the user suggesting a higher degree of data
compression on the class-one DEs or a lower degree of
parallelism for class-three DEs. Since the size of each
data retrieved per unit time from each storage device
is its bandwidth, each AU stored in a storage device
comprises a number of chunks of data whose size is
equal to the bandwidth of the storage device. We call
each of this chunk of data a Storage Element (SE). An
AU then consists of one or more SEs arranged in such
a way that guarantees parallel retrieval of contiguous
data. For a given DE, we denote as 73 the number of
storage devices in xi. We call 73 the storage length
of a storage set. Consequently, each xj comprises v
AUs where each AU is denoted as az;,1 <1 < 7.
We represent the number of SEs in ap; as 6. The
sum of all the sizes of all the SEs of all the AUs of a
DE must be at least as large as the size of the DE.
Furthermore, reducing any AU of any storage set of a
DE by one SE must violate the preceding condition.
We denote as Xf 1 the fact that SE f, belongs to AU
ar,1. Therefore, for Xk

{L 2}: X5 =

lf N%,l then V(h mod v = ¢ mod ’Yk) N’/;,l (h ;é q)

As is evident from building the AUs, the data rep-
resented by each AU do not constitute a contiguous
data in a DE. The physical addresses of the SEs in
an AU differ by some factors of the bandwidths of the
storage devices. This is a consequence of data inter-
leaving which is essential for achieving parallel I/O for
a stream of data. Figure 4 shows the SEs and AUs of
all the storage sets. The numbers beside the boxes
represent the physical addresses of the SEs in a DE.

The above discussion on fragmentation strategy
has been done in the context of class-one DEs. In
the case of class-three DEs, the degree of paral-
lelism also represents the expected number of AUs.
Therefore, for a class-three DE, a storage set is
valid if its storage length is equal to the DE’s

X1 -

g 3¢
60 90

a1 ay,2 g1 aq 2 a4 3
X5 30— 4Q 50—
solL| g0l 100 10|72
/5] /s] 7 75]
as 1 as 2 as 3 as 4

Figure 4: A sample generation of storage sets.

degree of parallelism. Furthermore, conditions (1) and
(2) and the acceptibility requirement discussed above
must hold. If the application of the above rules yields
no storage set, then a storage set whose storage length
minimally exceeds the degree of parallelism is selected.
In the case of class-two DEs, each DE is made up of
one storage set consisting of one AU.

6 The proposed mapping techniques

An AU is allocatable to a storage device if the stor-
age device belongs to the device cluster from which the
AU was built. In other words, the bandwidth of the
storage device must be equal to the size of the AU’s
SE. Given an AU, we have a list of storage devices to
which it is allocatable. If the AUs and storage devices
represent nodes in a graph, then we can construct an
edge from an AU to a storage device to which that
AU is allocatable. We must then select one of these
storage devices as the most efficient storage for the
AU. In order to accomplish this, one must consider
the effects of allocating a given AU to all the possible
storage devices. If we assign a weight to each of these
nodes, then one can, using some criteria, determine
the best allocation for a given AU. In order to fairly
balance the loads, we need to specify some factors that
will help to determine an efficient allocation of an AU.
Prominent among these factors are the current status
of a storage device with respect to the AUs already
allocated, the effect of the free space in the storage
device, and the bandwidth of the storage device. The
current status function must be defined in terms of an

AU’s size and frequency and we call that the expected
disk traffic requirement and represent it by a function
F. This function must always be defined such that
a DE’s frequency is emphasized and certain charac-
teristics of the multimedia environment should also
be taken into consideration. Through many experi-
ments, we have found that F(f,z) = zﬁ, where f, z
are frequency and size of an AU, respectively, seems
to be a good choice. Of course, F can be defined in
many other ways to emphasize special characteristics
of an environment. Let a; be an AU, SIZE(a;) the
size of AU a;, and FREQ(a;) the frequency of AU a;.
The current cumulative traffic requirement of Sy, as-
suming that there are a total of h AUs already stored
in it, is computed as:

v =S F(FREQ(a;), SIZE(a;)).

The cumulative traffic requirement of a storage device
is an indication of the expected access to the storage
device with respect to the AUs allocated to it. Con-
sequently, a reasonable motivation is to allocate the
next AU to the storage device with lowest cumulative
traffic requirement. However, that factor alone does
not determine an efficient storage device to allocate an
AU. In order to get a more vivid understanding of the
effect of the cumulative traffic requirement, we need
to determine the expected disk traffic per unit of allo-
cated space in a storage device. That value indicates
the disk traffic exerted per unit of allocated space in
a given storage device. We extend the expected disk
traffic per unit of allocated space and determine the
induced expected disk traffic per unit of allocated space.
That is the expected disk traffic per unit of allocated
space if the AU under consideration is allocated to a
given storage device. We denote as G} the induced
expected disk traffic per unit of allocated space by an
AU on Si. After a successful allocation of an AU to
Sk, S} becomes G}’. Consequently, for a given AU,

w _ SP+F(FREQ(a;),S51ZE(a))
Gri= ST¥5IZE(a;) :

It is undoubtably obvious that the amount of free
space in a storage device plays a role in determining
the current and future utilization of a storage device.
The fact that a storage device has a low cumulative
traffic requirement relative to another storage device
does not convincingly indicate that it is under-utilized
relatively. If the storage device with higher cumulative
traffic requirement has considerably larger free space,
then it is imperative that relative to their available
spaces, it is under-utilized. Again, the fact that a stor-
age device has a high cumulative traffic requirement
relative to another storage device should not imply an

automatic rejection of that storage device. If a stor-
age device has a high cumulative traffic requirement
but a high bandwidth, then the resultant effect of the
cumulative traffic requirement is reduced by the fact
that a large chunk of data is retrievable per unit time.
Therefore, our mapping goal is to select the storage de-
vice that minimizes these factors. It is obvious that, in
terms of magnitude, the bandwidth of a storage device
is comparatively smaller than its total allocated space
and free space (in most cases). Therefore, expressing
the impacts of allocated space, free space, and band-
width with respect to the cumulative traffic require-
ment requires that the impact from the bandwidth be
expressed in such a way that it does not obscure its
counterparts. The impact from the bandwidth should
be related to the disparity between the bandwidths,
i.e., if there is a considerable gap between the smallest
and largest bandwidths of the storage devices under
consideration, then the bandwidth factor should also
reflect that. We represent the sum of these factors as
a cost function ¢. If

¢1 = cost induced by induced expected disk traffic
per unit of allocated space,
cs = cost induced by free space with respect to
the cumulative traffic requirement,
c¢3 = bandwidth factor,
then,
¢ = (e1e1 + €2¢2) X 3

w
where ¢; = G}/, ca = S—’}, and

k
e3BW i ax—BWs
C3 = 1 —|— —(& gk) .

BWas 18 theeei’na)gil;r;um bandwidth of the storage de-
vices allocatable to an AU. BWg, is the bandwidth of
the storage device currently under consideration from
the set of storage devices allocatable to an AU. The
coefficients e; and es are the accentuating values. We
use them to emphasize or de-emphasize the relative
importance of the corresponding induced cost. We
recommend that these coefficients be in the range of
zero and 1. The coeflicient e3 1s used to control the ef-
fects of the bandwidth factor and it is determined from
the maximum and minimum bandwidths in the sys-
tem. We recommend that ez be selected such that the

bandwidth factor is in the range 1.5 to 1.9. In other
esBW e —BWs
words, 1.5 <1+ —mwo. < 1.9 For example,
given that BW, 4, = 10M B and BW,,,;, = 50M B, if
e3 = 2, then the bandwidth factor is in the range of 1.5
to 1.9. On the other hand, if e3 = 3, then the band-
width factor is in the range of 1.67 to 1.93. Given an
AU and the ¢ costs of allocating it to different storage
devices, we select the storage device with minimum

cost. We denote the fact that an AU, a;, is allocat-
able to the storage device, Sg, as a; LS and the size
of each SE in a; as SESIZE(a;). Therefore, a; LSy, if

1. a; € ®°"*¢ and
(a) SESIZE(a;) = BW(S),
(b) S{ > SIZE(ay).

2. a; € R° V a; € R and
(a) S{ > SIZE(ai).

Our minimization goal is such that given ¢ AUs of a
composite multimedia object and ¢ 1 as the cost of
allocating AU a; to the storage device S, therefore,

minimize 3 ¢_, ¢ where 35S} (1 < k < m) such
that aiJ_Sk.

For example, Table I shows the current values for 6
storage devices, and Table II shows the sizes and fre-
quencies of 5 AUs of a composite multimedia object.
After determining allocatabilities of the AUs and com-
puting the ¢ costs, Table III shows the ¢ cost of each
AU to the storage device to which it is allocatable. In
this simple example, e; = ey = 1.

Table I: A sample of storage devices’ current values
used for allocation decision.

S, S5 Sz S4 Sg Sg
Free space 10MB [100MB | 500MB | 100MB | 1MB 15MB
Allocated space 5MB | 120MB | 10KB | 500KB | 50MB | 70MB
Cur. cum. 15728640 | 262144000 102400 | 1048576 | 125829120 104857600
traffic regs.

Bandwidths iMB imMB 10MB | 15MB | 15MB | 10MB

Table II: A sample of sizes and frequencies of some

AUs.
ai az as aq a5
Size 50KB | 75KB | 1.5MB | 100KB | 3MB
Frequency 0.4 0.19 0.10 0.3 0.01

Table III: ¢ costs from Tables I and II.

S1 S Sa S Ss Se
a; | 16.6 | 2810.0 | - - - -
az | 17.5 | 2811.0 | - - - -
az | - - 0.2 | - - 16.9
ag | - - - 0.1 | 128.1 | -
as | - - 0.3 | - - 17.2

Consequently, applying the allocation and mini-
mization rules, we have a; LSy, as LS, az 1 S, ag LSy,
a5 1S3, with a total cost of 2844.8.

Figure 5: A sample mapping via Hungarian Method
and an unallocatable bipartite graph.

8 Simulation model and results

We generated 3 groups of devices where each group
has common characteristics such as the bandwidth and
size. Each group comprises 10 storage devices. In the
results shown below, each composite object consists
of a random number of DEs of size between 1 byte
and 500MB. The expected retrieval rates range from
.125KB/s to 30MB/s. Devices in group 1 have size
of 100MB and bandwidth of 1MB, devices in group
2 have size of 7T5MB and bandwidth of 750KB, and
devices in group 3 have size of 50MB and bandwidth
of 500KB. Figure 6 shows the distribution, according
to frequencies, of the total number of DEs generated.
The expected disk traffic function used, given size, z,
and frequency, f, is F(f,z) = z[ﬁ]

Figure 7 shows an example final cumulative traffic
requirements of the storage devices when a fair mix-
ture of DEs of different frequencies were used. Com-
parative results were also obtained when more low or
high frequency objects were used. Table IV shows the
data distribution by percentage in the storage devices
after the allocation of the objects.

sz <KB | <10KB | <100KB|<500KB | <IMB |<10MB [<50MB | <200MB| <400MB| <500MB

gy | W | W | W | | 0| @ | 00| & | & | 00

Figure 6: Distribution of simulation data.

Table IV: A sample percentage data distribution.

040 053 067 .080 093 -110 120 130 147 160
1 6.3 4.6 4.6 4.1 0.0 2.4 2.6 3.7 3.5 2.9
2 6.9 4.2 5.7 0.0 6.6 3.5 22 1.6 2.6 2.4
3| 68 4.8 5.6 41 [34 28 25 3.2 32 | 59
4 6.1 4.9 5.5 3.6 5.8 4.3 4.4 2.1 6.9 8.4
5 6.0 4.0 4.1 7.5 3.6 12 4.7 4.9 4.1 3.5
6 6.8 4.8 3.0 2.2 23 5.4 6.5 1.3 1.1 8.3
7| &8 5.2 0.0 25 0.0 3.4 3.9 12 53 | 10
8 6.6 4.7 7.1 1.9 1.5 1.5 4.9 2.4 15 0.9
9 6.6 5.5 0.0 3.8 3.6 13 1.3 2.2 0.9 0.9
10| 6.4 5.1 9.3 25 22 4.5 0.0 0.5 1.5 0.0
11| 1.4 3.7 23 35 a2 16 6.7 4.3 48 | o8
12| 25 3.8 0.0 6.1 5.0 4.1 23 1.1 1.7 7.5
13| 1.4 3.0 1.4 4.3 7.6 8.4 25 11.1 8.1 10.2
14| 1.4 3.7 3.1 2.3 5.8 4.0 6.0 4.2 1.6 1.6
15| 20 2.4 0.0 0.8 0.0 5.8 0.0 17 34 | 33
16| 2.8 2.8 7.9 0.0 0.0 0.0 25 1.9 3.0 1.5
17| 1.4 3.3 29 5.0 10.2 13.3 9.2 11.2 10.2 6.7
18| 2.1 2.4 0.0 1.0 0.0 25 2.6 0.3 2.2 0.0
10| 23 28 55 2.3 2.2 28 15 5.9 27 | a4
20| 2.3 2.2 23 0.7 29 4.6 6.0 4.7 22 2.2
21| 1.8 1.4 3.0 0.0 5.3 2.6 3.2 25 0.0 2.7
22| 1.5 1.6 5.2 0.0 1.5 12 29 8.7 3.3 1.4
23| 07 2.0 26 4.1 0.0 16 a7 00 | 40 0.9
24| 1.3 25 2.1 4.4 2.4 2.2 3.5 12 0.0 1.9
25| 1.1 2.2 3.2 2.9 2.0 0.0 5.2 6.9 2.8 7.5
a| 1.6 1.0 5.4 29 5.8 2.4 0.8 1.5 6.3 4.4
27| 18 2.0 28 4.5 34 14 0.0 0.7 07 3.2
28| 1.6 2.7 3.3 3.4 4.1 1.4 0.9 11 1.0 1.5
29| 1.9 25 1.0 5.5 1.7 6.8 3.1 4.5 10.4 2.6
30| 1.8 2.0 0.9 5.1 7.1 3.1 3.4 3.2 1.1 12

600 - B

Final CQunulative Traffic Costs

500 | B

5‘ 1‘0 e 1‘5 b 2‘0 25
Figure 7: A fair mixture of DEs.

9 Conclusions

We have presented a multimedia object model and
described the allocation strategy necessary to achieve
the real time retrieval requirements of the modeled
multimedia objects. We classified the DEs of a com-
posite object into three classes based on their I/O re-
quirements. The allocatability requirements of an AU
to storage devices are defined and the necessary and
sufficient criteria for obtaining efficient allocations are
described. A cost value based on a disk utilization
per allocated space, the amount of free space, and the
bandwidth of a storage device are used to determine
an efficient allocation and to balance the loads on the
storage devices. A bipartite graph model is presented
and its characteristics discussed. The bipartite graph
forms the basis for multimedia object allocation to

storage devices. The Hungarian Method for bipartite
matching is used to determine efficient allocation for
the AUs of a composite object using the cost values.

References

[1] C. G. Bell, The mini and macro industries,
IEEE Computer, Vol. 17, No. 10, 1984, pp. 14-
30.

[2] W. Myers, The Competitiveness of U.S.A. Disk
Industry, IEEE Computer, Vol. 19, No. 11, 1986,
pp- 85-90.

[3] M. Y. Kim, Synchronized Disk Interleaving,
IEEE Trans. on Computers, Vol. C-35, Vol. 11,
November 1986, pp. 978-988.

[4] M. Livny, S. Khoshafian, H. Boral, Multi-
Disk Management Algorithms, Proc. 1987 ACM
SIGMETRICS Conf. on Measurement and Mod-
eling of Comp. Syst., pp. 69-77.

[5] P. Chen, D. Patterson, Maximizing Perfor-
mance in a Striped Disk Array, Proc. 1990 ACM
SIGARCH 17th Intern. Symp. on Comp. Arch.,
Seattle, WA, May 1990, pp. 322-331.

[6] J. Zupan, Clustering of Large Data Sets, Tech-
nometrics, Vol. 29, Nov., 1987, pp. 497.

[7] A.D. Bell, F.J McErlean, P.M. Stewart,
Clustering Related Rules in Databases, The Com-
puter Journal Vol. 31, June 1988, pp. 253-257.

[8] J.S. Deogun, V.V. Raghava, T.K.W. Tsou,
Organization of Clustered Files for Consecutive
Retrieval, ACM Trans. on Database Systems, Vol.
9, December 1984, pp. 646-671.

[9] D. P. Anderson, Y. Osawa, A File for Con-
tinuous Media, ACM Trans. on Computers, Vol.
10, No. 4, November 1992, pp. 311-337.

[10] P. V. Rangan, H. M. Vin, Designing File Sys-
tems for Digital Video and Audio, Proc. 13th
ACM Symp. on Operating Systems Principles,
Vol. 25, No. 5, Oct., 1991, pp. 81-94.

[11] T.H Cormen, C.E Leiserson, R.L Rivest,
Introduction to Algorithms, The MIT Press,
1990.

[12] C.H. Papadimitriou, K. Steiglitz, Combina-
torial Optimization, Prentice-Hall, 1982.

