A Design of Storage and Retrieval Schemes in a
Multimedia Object Manager for Modeled

Object and Efficient Multimedia
Object Storage Strategies’

Kingsley C. Nwosu
IBM POWER Parallel Systems Division,
Neighborhood Rd., MS/992,
Kingston, NY 12401,
USA.

nwosuck@donald.aix.kingston.ibm.com.

Abstract

Due to the fact that the speeds of secondary storage devices have not improved
relative to other computing technologies, a lot of efforts have been devoted to intelli-
gent and efficient ways of storing data of storing data to maximixe the bandwidth of
a computing system. Many of those techniques have proven useful; however, with the
advent of multimedia and its enormous real-time and size requirements, the problems
of data allocation and retrieval have become even more crucial. In [1][2], we describe
some designs of eflicient multimedia object storage strategies that strive to allocate
multimedia objects with the objective of satisfying their real-time retrieval require-
ments. We utilize some fragmentation strategies, a cost function, and bipartite graph
model to allocate multimedia data efficiently. In the development of the storage alloca-
tion strategies, some assumptions were made about the functionalities and capabilities
of the controlling Multimedia Object Manager. Here, we describe the design of the
storage and retrieval schemes for a multimedia object Manager (MOM) that controls
our allocation techniques. We describe the multimedia object model, generation and
aggregation of the Storage Elements (SEs), determination of SEs spanned by an I/0O
request, clusterization and parallelization of requests, storage and retrieval structures,
and extension and reduction of objects.

Keyword: efficient storage, multimedia object modelling, object decomposition, par-
allel I/0, retrieval schemes, storage schemes.

1 Introduction

The term multimedia means different things to different people depending on their oper-
ating environment. To some people it simply means the integration of text and graphics on

a stand-alone system like a personal computer. To others it means the integration of text,

L Published in Proc. of 2nd Intern. Conf. on Info. Syst. & Management of Data (CISMOD), New Delhi,
India, Oct. 3-5, 1993

graphics, and audio. Irrespective of one’s view of multimedia, it is a combination of two
or more of the following: motion and still video, special effects, synthetic video, graphics,
text, voice, audio, and images. The management of multimedia data is one of the most
crucial features of multimedia information processing. Although the cost of the hardware
required for the capture, storage, and presentation of multimedia data is decreasing every
year, the softwares for effectively and efficiently managing such data are lacking. It is a sine
quo non that intelligent and efficient multimedia data storage and management techniques
be developed for multimedia information processing. Processor speed, memory speed, and
memory size have grown exponentially over the past few years [3][4], however, disk speeds
have improved at a far slower rate. Consequently, the speed of the disk rather than the speed
of the CPU’s is the limiting factor in many applications. The bandwidth of the secondary

storage devices has not improved relative to other technological advances.

Conventional allocation techniques (such as data stripping/de-clustering [5][6][7] and data
contiguity/clustering [8][9][10]) are developed mainly for text and numeric files, which al-
though can be different in sizes, are more or less on the same order. Unfortunately, when
applied to multimedia applications, the conventional techniques are inadequate and ineffi-
cient. For real-time information retrieval and presentation, it is imperative that data, for a
given medium, be retrievable at some given rate. The rates for some media are very high
for current storage devices. The most conspicuous of these is in the area of digital video.
For example, the video data object based on the NTSC standard requires that video data
be retrievable at a rate of 45 MB/s. However, the peak speed of a magnetic disk drive is
about 10MB/s and CD-ROMs operate at 1.2 MB/sec. Due to this apparent limitation on
the secondary storage devices, it is necessary to store data intelligently in order to obtain
the expected retrieval speed. Consequently, the way multimedia objects are stored and the
capabilities and efficiency of the object manager play a large role in determining the realiza-

tion of efficient and reliable multimedia information processing system.

In [1][2], we describe the multimedia allocation problem and the reasons that conventional
approaches have proven inadequate and insufficient. We presented a multimedia object
model, the fragmentation strategies, and the efficient allocation process for parallel access
storage devices and configuration as depicted in Figure 1. In the design of those allocation
strategies, we assumed the existence of a Multimedia Object Manager (MOM). A MOM is
a subsystem of a Multimedia Server that is responsible for the storage and management of
different data allocations and retrievals. A Multimedia Server does not only manage complex
objects, but also must be capable of integrating various information units for complex object
composition. It must also provide capabilities for enforcing consistency, protecting objects,

ensuring synchronization, etc.

Figure 1: Parallel Access Storage Device Architecture.

In this paper, we present a design of efficient multimedia object storage and retrieval
schemes based on our allocation strategies. These schemes strive to achieve data availability

at some specified rates for real-time multimedia information presentations.

The rest of the paper is organized as follows: Section 2 describes the multimedia object
model and decomposition techniques, and Section 3 discusses the generation and assignment
of SEs to the allocation units. In Section 4, we show how to determine the SEs spanned
by a retrieval request. Section 5 presents the clusterization and parallelization of a retrieval
request. In section 6 we show the storage and retrieval structures for multimedia object
storage and retrieval. Section 7 describes how DEs can grow or shrink while Section 8

discusses, in general, the necessary and sufficient steps for a retrieval process.

2 Multimedia Object Data Model

The multimedia object model comprises a number of tree-structured collection of objects
called complex multimedia objects that form a unit called a composite object. Each multimedia
object, that is a leaf node, in a composite object is a media type whose storable data is
referred to as a Data Element (DE). Figure 2 shows a composite object ol that consists
of 3 complex multimedia objects {03, 03,06} while the multimedia objects {04, 05, 0s, 09, 07}
are the DEs. The DEs are further classified into three different classes, namely, class-one,
class-two and class-three based on their necessity to meet an expected retrieval rate, a degree
of parallelism or no 1/0 real-time requirement. A class-one DE requires that some minimum
amount of its data be retrievable per unit time. This amount of data is referred to as a DE’s
expected retrieval rate. A class-three DE has a degree of parallelism needed to enhance its

computational efficiency for multi or vector processing.

Figure 3: Examples of class-one, class-two, and class-three DEs in a composite object.

that represents a storage device’s bandwidth.! An AU stored in a storage device consists
of a number of SEs each of size equal to the storage device’s bandwidth. These SEs are
arranged in the corresponding AUs with the aim of ensuring parallel accesses to media data
by accessing different AUs to meet the real-time requirements. Each composite multimedia
object, after decomposition, comprises a number of AUs which are allocated individually on
separate storage devices. For example, using the DEs in Figure 3 and assuming that the sizes
of DE1, DE2, DE3, and DE4 are 320KB, 50KB, 100KB, and 500KB, respectively, therefore,

in a homogeneous storage device configuration (where the bandwidths of the storage devices

number of bytes of data that is retrievable from a storage device per unit time

are the same), the DEs are decomposable into 7 SEs, {sel,...,seT}, 1 SE, {sel}, 2 SEs,
{sel,se2}, and 10 SEs, {sel, ..., sel0}, respectively, and the AUs are constructed as shown
in Figure 4. We assume that the bandwidth of the storage devices is 5J0KB per unit time.
The numbers below the SE numbers in the boxes represent the physical addresses of each SE
within its AU. We assume that each AU’s physical address starts from zero. For example,
sed in DE4 spans the physical addresses from 100 to 149. In a homogeneous storage device
configuration, the size of all the SEs of all the AUs of a multimedia object is the same,
thereby, making the offsets between different SEs in different AUs uniform. This uniformity
does not exist for heterogeneous storage device configurations. For heterogeneous storage

device configuration, a number of differences in bandwidths. For example, assuming that we

L L T S e e A L

sel se2 se3 seq sel se2 se3 seq ses sel
o 50 100 150 o 50 100 150 200 o

se1l
o

ses se6 se7 se6 se7 ses seo sel10 se2
200 250 300 250 300 350 400 450 50

Figure 4: Homogeneous devices: sample construction of AUs of a composite object.

have storage devices whose bandwidths are either 50KB or 100KB per unit time, therefore,
using the Figure 3 example again, we can construct 5 SEs for DE1, 7 SEs for DE4, 1 SE
for DE2 and 1 SE for DE3 as shown in Figure 5. These are one possible generation of AUs;

there are other ones. In [1][2], we present the allocation process that efficiently maps each

L L e e O A

sel se2 se3 sed sel se2 se3 seq ses sel
o 100 150 250 o 50 100 200 300 o

se1l
o

ses5 se6 se7
300 400 450

Figure 5: Heterogeneous devices: sample construction of AUs of a composite object.

AU of a complex multimedia object to a storage device. During that allocation process, we
determine, for each AU, its size, location, unit, etc. The size of an AU is the total number
of bytes of data that it contains; the unit is the size of each SE in the AU; while the location
identifies (by device identification) the storage device to which it is allocated. During alloca-
tion, each DE stores its decomposition factor which comprises the number of AUs generated

by the DE and the unit of the AUs.

3 Generation and Assignment of SEs to AUs

As we stated earlier, a DE comprises a number of AUs each consisting of a number of SEs.
During the determination of the efficient allocation of the AUs of a composite multimedia
object to storage devices, we constructed the AUs with the primary objective of achieving
the expected retrieval rate or degree of parallelism. Furthermore, we only determined the
size of each AU from its unit and each AU is a logical representation of some data. Each AU
does not indicate which physical data from the DE that it represents. In order to store actual
data via the AUs we must determine the physical constituents of the AUs with respect to the
SEs. Given an index of a SE of a DE, we want to be able to determine the AU (aj)to which
it belongs. In order to accomplish this, we must have a way of uniquely identifying each SE
in a DE. However, firstly, we have to compute the number of SEs in a DE. As a prelude to
computing the number of SEs, we solve an integer linear programming problem. We group
related storage devices together based on their bandwidths into !, p?, ..., p*, where p is
the numberof different bandwidths in the system and the bandwidth of each storage device
in o' is BW(gp'). Subsequently, given that the expected retrieval rate of a DE is r and its

size is s, we solve the problem:
nBW(p') + y2BW(p*) + ...+ y.BW(p") = 1,
1 < y2,¥2 S Ysheeo 5 Ynm1 S Yn, Yn > 0.

Also, BW(p') > BW(p*) > ... > BW(p"). The solution from the problem above produces
the number of storage devices of each group of devices that is needed to achieve the real-time
requirement and also the total number of AUs. The same problem is solved by substituting
r for s to determine the number of SEs of each bandwidth needed. The computation of the
number of AUs and SEs and their acceptability are detailed in [1][2]. We then compute the
total number of SEs in a DE as

6 = Z:’Z(LZI Yi-

Having computed the number of SEs in a DE, we uniquely identify each SE. We denote the
fact that the gth SE belongs to a; as X}. Given that a DE comprises § SEs, we generate §

number of SEs indices and using the constituents of 6, as above, we initially know that
Viz1, ¢ =@ and X,
Subsequently,
Vizyt1,6 if g mod v = ¢; (1 <1 <) then MZ

At this time, we have generated all the SEs of a DE, indexed and assigned them to the AUs,

now, we have to determine the physical address of each SE in an AU. Henceforth, we denote

the ¢th SE as se;, number of AUs generated by a DE as «, and unit of a; as 7,. Assuming
that ADDR(se;) is the physical address of se;, then

Tk Wy
ADDR(se;) = { Ek/:I mw + (X5 7) ifw >0

D k=1 Tk otherwise
where
7k, (1 <k <) is the size of each SE in ay,
w=15)
n' = (i—1) mod .

For example, from Figure 5, where 7 = 50, 7, = 50, 73 = 100, 7, = 100, and 75 = 100, for
se6 of DE4, w = 1, and n’ = 0. Therefore,

ADDR(se6) = [50.1 4+ 50.1 + 50.1 4+ 100.1 4+ 100.1 + 100.1] = 400.
Similarly, for se7 of DEA4,
ADDR(seT) = ADDR(se6) + 50 = 450.

Another property of a SE that is important for satisfying an 1/O request is the physical
location of a SE in the storage device to which the corresponding AU is stored. After the
allocation process, each AU carries with it its starting location in the storage device to which
it is allocated. If vy is the starting location of a; in a storage device and LOC (se;) is the

physical location of se;, then

nw+v ifh#0

T,w + v otherwise

LOC(se;) = {
where

w = L%J, and
h =1 mod ~.

Using the set up of the example above, assuming that 11 = 100 and v = 50, for se6 and se7
of DE4, w =1 and h =1, h = 2, respectively, where

LOC(se6) = 100 4 50 = 150,
and

LOC (se7) = 50 + 50 = 100.

4 Determining the SEs of a Retrieval Request

A typical retrieval request, in most computing systems, consists of a physical address and a
size. The physical address specifies the location in the DE to start retrieving data while the
size specifies the amount of data in bytes to retrieve from the starting address. As a result,
any reliable scheme to facilitate the retrieval of the multimedia object data must have the
capability of determining which AUs contain the starting request address and which SEs are
spanned by the request size. In general, given a retrieval request of size § that starts at o,

the SEs spanned by the request are

{8€s,,8€0,, ..., 8€:.}
where)
o yw4+w +1 ifw>0
7Y w1 otherwise
and
h = E?:l Ti?
w= L%J?

0<w <y—1and Z;““:Il 7; < (0 —wh) < Z;U:/'IH T

Henceforth, we refer the value represented by h as the storage length data of a DE. The
index, x,, of the last SE spanned by the 1/O is computed similarly by substituting ¢ by
(¢ + 8). For example, using Figure 5, let ¢ = 55 and § = 200, therefore, for x4,

h = 400,
w =0,
0<1<4and 50 <55 <100.

Therefore, 1 = 2. For z,, ¥ = 255, and

w =0,

0 <3 <4 and 200 < 255 < 300.

Therefore, x, = 4. Consequently, the I/O request spans {seg, ..., se4}.

5 Clusterization and Parallelization of a Retrieval Re-
quest
Since the storage length[l] of a DE represents the number of storage devices spanned by

the SEs of a DE to achieve the real-time requirements, under normal circumstance, any

retrieval request to the DE can be performed by a number of parallel requests limited by the

storage length of the DE. One of the primary goals of our allocation strategy is to provide
the ability to initiate parallel requests to achieve some real-time requirements. Therefore,
having determined the SEs spanned by a retrieval request, we group the SEs such that a
group comprises SEs that are allocated to the same storage device and their locations are
monotonically increasing by the storage length data of the corresponding DE. The locations
of an arrangement of a number of SEs can only be monotonically increasing with respect
to the storage length data if and only if those SEs are contiguously allocated. However, an
extension of a DE (as described below) may violate this contiguity rule. Under that situation,
a request may necessitate a number of parallel requests that is greater than the storage
length of the DE. A parallel request must span some SEs whose locations are monotonically
increasing with respect to the DE’s storage length data and the SEs must belong to the same
storage device. As a result, we satisfy a retrieval request by initiating a number of parallel
requests equal to the groups formed by the SEs spanned by the request. For example, a
request to DE4 in Figure 5 starting from the physical address 150 and size of 270 bytes
spans se3 to seb necessitating 4 parallel 1/Os for f3, f4, f5, and fi.

6 Storage and Retrieval Schemes

One of the objectives of the design of the storage and retrieval schemes for the multimedia ob-
ject model described is to maintain compatibility and implementability with UNIX?-oriented
[11][12] [13][14] computing systems. UNIX-based systems operate with hierarchical stream-
oriented file systems. A file system is the most conspicuous component of an operating
system that is responsible for storing, retrieving, naming, protecting, organizing, etc., most
of a computing system’s data and applicable resources. The primary purpose of a file sys-
tem is to store and manage data effectively and reliably. The storage and retrieval schemes
presented here are also extensible to incorporate object-oriented model of a file system. The
storage and retrieval schemes for our model of the MOM is designed with a goal to fostering
both direct and indirect manipulation of the multimedia data through the file system and
MOM. We want to be able to access the multimedia data via the file system for read-only
operations and reserve the rights for read/write operations to the MOM. The details and
specifics of the interactabilities between the file system, the MOM and the DEs will be

presented in a follow up to this paper.

6.1 Storage and Retrieval Structures

The Multimedia Object Manager that controls the storage and retrieval process for the
multimedia object model described here consists of an AU Hash Table (AUHT) and a

2UNIX is a registered trade mark of AT&T

number of SE nodes (senodes) for each DE mapped to some storage devices.

Definition: An AU Hash Table is a segmented table that contains an AUHT header, a
number of pseudo-AU segments (pausegs) and, possibly, some extension segments (extsegs)
for each DE allocated in the system. The AUHT header contains such information as the
decomposition factor, unique identification for the DE, current number of pauseg and extseg
entries, etc. Each pauseg contains a pseudo-AU segment identification (psegid), a starting ad-
dress (saddr), an ending address (eaddr), a segment modifier (smod), a SE modifier (semod),
a pointer to a list of senodes (selist), a number of senodes (nses), and some reserved space
(segres). The psegid is a positive integer value that indexes the pausegs and also denotes the
relative time of the creation of a pauseg. The saddr is the lowest physical address of the SEs
pointed to by selist. The eaddr is the highest byte address in the SE that has the highest
physical address in the SEs pointed to by selist, i.e., if se, is the SE with the highest physical
address, then the eaddr is the sum of the physical address of se, and the size of se, minus 1.
The smod is a signed integer value that is used to normalize the saddr and eaddr of a pauseg
and the physical addresses of the SEs pointed to by selist. The semod is a signed integer
value that is used to normalize the unique identifications of the SEs pointed to by selist.
The selist points to the SEs spanned by saddr and eaddr. The nses indicates the number
of senodes that are associated with a given pauseg. The segres is some reserved space that
could be used by the MOM to store some special information about a pauseg. In case an
AUHT block is exhausted, each AUHT contains a nauht field for additional information.

Definition: An extsegis a fixed size data entity that is exactly the same size and contains
the same fields as a pauseg. We usually associate a pauseg with an allocation that does not
violate the real-time requirements and the sequential nature of DE. An extseg is used to
maintain the allocation and real-time requirements of DEs after extension and reduction (as
explained below). Each field of an extseg carries the same information as in a pauseg.

Definition: An senode is a fixed size data entity that comprises a SE identification
(seid), a SE physical address (sepaddr), a SE size (sesize), a storage device identification
(sdid), a SE location (seloc), and some reserved space (seres).

AUHT Header

Decomposition factor pauseg / extseg

DE unique identification
psegid saddr eaddr smod semod selist nses segres

Number of pseudo-AU segments

Number of extension segments

Reserved area

Figure 6: Layout of an AUHT Header and a pauseg or an extseg.

The seid is the unique SE number assigned to a SE during the generation and assignment

of SEs to AUs (See Section 3). The sepaddr is the SE physical address that represents the
physical starting address of the SE in the DE. The sesize is the actual size of the SE which
is also the number of bytes that are sequentially spanned by the SE. The seloc is the byte
address of the block where the SE is stored in a storage device. The sdid is the unique
identification of the storage device on which an senode is stored. For all practical purposes,
the sdid contains all the pertinent information needed to locate a storage device whether it
is local or remote and for manipulation by the file system. The seres is some reserved space
that could be used to store special information by the MOM. It could also be used to store
some small amount of data of a SE, especially after extension, depending on the size of seres
and the data. Figure 7 shows the layout of an AU Hash Table and an senode while Figure
8 shows the AUHT and senodes of DE4 from Figure 5.

AU Hash Table (AUHT)

AUHT header

pauseg 1
pauseg 2 senode

pausegn seid sepaddr sesize seloc sdid seres
extseg 1
extseg 2

extseg k

Figure 7: Layout of an AU Hash Table and an senode.

7 SE Extension and Reduction Process

Two of the most costly problems in maintaining data are the effects of data extension and
reduction. It is relatively easier to decompose and store data after the initial creation.
However, when a fully allocated SE of an already stored DE is extended, the data allocation
must be performed reliably and correctly so that the natural sequentiality of the data and
the allocation requirements are not destroyed. It is obvious that when a SE of a currently
allocated DE is extended, the new data upsets the current physical addresses and, thereby,
renders the storage of some data, with respect to the data set that must be retrieved in
parallel, invalid. For example, in Figure 1, assuming that senode 2 of DFE4 is extended
with 30 bytes of data, the new or extraneous data, following our allocation policy, should
be in senode 3, and the last 30 bytes of data in senode 3 should be in senode 4, and so on.

Obviously, this kind of change has upset our allocation objective.

senode 1 senode 2

=TI +—FT-

headier s |woea] 1] o0 ‘
50 ‘ ‘ D
100‘ ‘ ‘ %_P mosen:o: ‘ ‘

pauseg 1 1| o a99 o‘ o +5_‘74,
senode 4

4‘4 ‘20()
Figure 8: An example of an AUHT and senode entries.

1 |o

300(100

senode 5
% s

In conventional Unix-based and other file systems, this kind of problem is negligible since
files are not allocated with the objective of ensuring some parallel retrievability. A common
but costly approach to handle the problem is to always re-allocate a DE after extension.

We can confidently and consistently allocate some new data resulting from an extension
if the size of the new data is equal to its DE’s storage length data. In that case, the new SEs
can be allocated to the storage devices holding the DE according to the allocation policies
since the SEs span the DE’s storage length. For example, if we extended senode 2 in Figure
8 by 400 bytes, we can confidently and fully allocate the new data across the DE’s storage
length devices, thereby, uniformly changing some of its physical addresses. As a result, we
store new or extra data resulting from extensions on the DE’s storage devices only when the
data forms a number of SEs equal to the storage length of the DE. In order to accomplish
this, it becomes imperative that we must be able to maintain and coalesce data resulting
from extension until they form the required SEs. We use the extsegs to maintain the list of
contiguous data from extension that have not formed the required allocation unit. Each selist
of an extseg points to a list of senodes whose cumulative size is less than the DE’s storage
length data and whose physical addresses are monotonically increasing. Until extension data
forms an allocatable unit, it is stored in some reserved spaces in the storage devices that
hold the DE.

As a result of extending a fully allocated SE, the senodes of a newly created SE is updated
with information from the senode of the original SE and certain fields of the existing pausegs
are modified. The sepaddr of the new SE is computed from the sepaddr and sesize of the
original SE. If the new senode is not a logical part of an existing extseg, then a new extseg
is created and its fields’ information determined from the current pauseg or extseq. It is also
assigned the next available index number from the psegid of the original senode. All the
senodes following the senode that was extended are detached from their current pauseg and a
new pauseg entry is created for them, updated and indexed accordingly. Furthermore, every
smod value for every segment entry whose saddr is greater than or equal to the saddr of the
new pausegs or extsegs is modified with the number of bytes by which the DE was extended.

Every semod of every pauseg and extseg whose saddr is greater than or equal to the saddr of

the new pauseg or extseg is modified with the number of SEs by which the DE was extended.
The semod and smod of the newly created segment entry are not affected.

If the SE extended is not fully allocated, then one needs only to update the smod’s of
the applicable segment entries. Furthermore, an extension on the last senode of a DE does
not require that an extseg be created; we simply use the index of the new SE to determine
which storage device to store it. For example, for DE4 of Figure 5, assuming that f;1?
Si, (1 <@ <5), and DE4 has been extended by 300 bytes. This extension produces se8, se9,
and sel0 which, using the process described in Section 3 and the storage length of DE4,
shows that X5, 9, and X1°.

When we need to update an smod of an entry after an extension, we add the size of the
extension to the current value of the smod. Furthermore, if some new SEs were created, we
add the number of SEs created to the current value of the semod of each of the segment
entry whose saddr is greater than the saddr of the extended segment entry. Figure 9 shows
the new values for the AUHT and senodes from Figure 8 after extending senode 2 by 70
bytes and senode 4 by 130 bytes. Figure 10 shows the results of extending exztseg 2 of Figure
9 with some data such that the storage length data is achieved. In this case, extseg 2 was
extended with 270 bytes.

AUHT
senodes

header [5 | owDE4| 3 2

pasat| 1| 0 | | o [o| | Ao Tes T T T+ A==]
pauseg 2| 2 100 199 70 1 7 ‘3‘ 100‘ 100‘ ‘ ‘ ‘

g3 | 20| 9| 0|3 | | ET el T T+ s wl]
extsegl |1 | 100| 169 | O 1 n [2] 200] 70 [| [|

extseg2 |2 | 200 | 320| 70 | 2 [3] 200] 200] [| }—=a] 3o 30 [[[|

Figure 9: An example of extending senodes.

Having achieved the storage length data from the extension, the extseg 2 data are moved
from the extension area to applicable storage devices. During extension, the size of an senode
is determined by applying its expected seid to the storage length to determine the storage
device it should be stored. The following arrangement then results: X3, XS, <7, x5 X9, 10,
and MXi'. In the case of removing an allocated SE, we run into the problem of holes which
can only be closed by coalescing. Since the DE has been successtully allocated, we can
coalesce after reduction without running the risk of insufficient space or destruction of the

data arrangement for real-time requirements.

2alb = AU a is stored in storage device b

AUHT

header [5 %DE4 | 4 1

pauseg1|1 | O 9% | o |o 2 [2] o] so] [| F—=2] s0] s [| |

pauseg2(2 | 100| 199 | 70 | 1 - (3] 100] a00] | [|

pauseg 3| 3 | 200 | 399 | 470 | & 5 [4] 200] 200] | | F——=5] s00] 100] [[|

extsegl|1 | 100| 169 | O 1 n [2] 200 720 [| T |

pauseg4|4 | 200 | s99| 70 | 2 . [3] 200] 100] [| F—=f4] 300] 100] | [}F—
6[aso [so | [[J=—s[ao [so] [[=—
7[s00 [100] [| |

Figure 10: A sample extension that forms a storage length data.

The coalescing can be achieved by direct copying of SEs or bit ORing. The affected
pausegs and senodes are modified accordingly by performing reverse operations to extension.

Figure 11 shows the results of removing senode 4 in Figure 10.

AUHT
senodes

header [5 %DE4 3 1

pauseg 1| 1 o 99 o o 5 [1] o so | [[F——= 2] so so [[[|

pauseg 2| 2| 200 | z99 | 370 | 5 5 [4] 200] 100] | | F—={s5] @00 100] | [|

extseg 1 | 1 100| 169 | O 1 - [2] 100 70 | | T]

pauseg3| 3| 200 | 599 | -30 1 z [3] 200] 100] [| F——={4] 30| 100] | | }—
6[4so [so [[[}=—As[a0 [so [[[}~—r-
7] 500 | 100] | [|

Figure 11: A sample removal /reduction of an senode.

Having shown some of the examples of data extension and reduction updates in our
storage and retrieval schemes, we now state some of the primary operations in those processes.
Let II? be the current number of pausegs and 11° the current number of extsegs in a DE,
SEG;(attr) the value of attribute attr for the pauseg or extseg entry whose psegid is ¢ and
SENODE} (attr) the value of attribute attr for the senode in SEG; whose position is k in
selist. If SENODUE; is fully allocated and has been extended by s' SEs of total size s, then

one of the following cases and major operations arises:

L. lis equal to SEG;(nses) and SEG; is an extseq
(a) The sum of SEG;(nses) and s is less than the DE’s storage length:
Attach the new senodes to the senodes of SEG;(selist),
YV SEG) € pauseg V extseg (1 # k), it SEG,(saddr) > SEG;(saddr)
then SEG(smod) = SEG(smod) + s

SEG(semod) = SEG(semod) + 3',
SEG;(nses) = SEG;(nses) + 5.

(b) The sum of SEG;(nses) and s is greater than or equal to the storage length:
Attach the new senodes to the senodes of SEG;(selist),
kK = SEG;(nses) + 3',
SEG;(eaddr) = SEG;(eaddr)+size of {SENODE;EGI,(
SEG;(nses) =7,
Change SEG; to a pauseg.
If &' > 7,
then II° = 1I° + 1,
Create extseg SEGy. from SEG,,
SEG.(saddr) = SEG;(eaddr) + 1,
SEGe(selist) -~ SENODE!
SEGe(eaddr) = size of {SENODE},, ... SENODE;,} — 1,
SEGn.(nses) = k' —~,
YV SEG) € pauseg V extseg (1 # k,1 # 11°), if SEG(saddr) > SEG,(saddr)
then SEG(smod) = SEG(smod) + s,
SEG(semod) = SEG(semod) + 5/,

nses

141---SENODE!},

2. Otherwise
I =11° + 1,
Create pauseg SEGnr4q (if | # SEG;(nses)) and extseg SEGye from SEG;,
SEG;(eaddr) = size of {SENODE; ... SENODE}} — 1,
If 3 SEGnr41
then IIP =117 + 1,
SEGnr(saddr) = SEG;(eaddr) + 1,
SEGyw(eaddr) =size of {SENODE],, ... SENODE}, (nses)) — 15
SEGHr(nses) = SEG;(nses) — 1,
SEGny(selist) - SENODE;,,,
SEG;(nses) =1,
SEGn:(saddr) = SEG;(eaddr) + 1,
SEG:(eaddr) = SEG.(saddr) + s —1,
SEG.(nses) = s,
YV SEG) € pauseg V extseg (1 # k,i # 11°), if SEG(saddr) > SEG,(saddr)
then SEG(smod) = SEG(smod) + s,
SEG(semod) = SEG(semod) + s,

In the case of removal /reduction, we apply similar steps by de-attaching senodes instead of

attaching them, performing subtraction instead of addition, and modifying the locations and

sizes of senodes appropriately.

8 General Object Retrieval Process

Although we have described the techniques and operations necessary and sufficient for a DE
extension or reduction, however, the expected bulk of the activities in our system are retrieval
requests. Here, we enumerate the primary steps necessary for a successful completion of a
retrieval request. A retrieval request comprises a DE name, an offset, and a size. The offset
is the physical position within name where a retrieval should start while size is the total
amount of data to retrieve. Therefore, given the above retrieval information, the following

steps are necessary to accomplish the request:
1. Obtain the AUHT of name,
2. Find the pauseg/pausegs and/or extseg/extsegs that cover the offset and size,

3. Collect all the senodes that span the offset and size from information obtained in step

2

?

4. Using the sdid of the senodes collected in step 3, group related senodes in increasing

order of their locations with respect to their sizes,

5. Issue concurrent requests for all the groups formed.

9 Simulation and Proto-typing

The simulation results of the allocation strategies mentioned here are presented and analyzed
in [1][2]. The simulations involved the generation of DEs of composite objects and storage
devices with the necessary attributes. The decompositions and the allocation parameters
were applied with the storage techniques which produced, in addition to satistying the real-
time requirements, balanced distribution of objects in the storage devices. Figure 12 shows
an example result of such distribution where the cost values of allocated objects within a
group of homogeneous storage devices are relatively uniform. The final cumulative traffic
requirement is the weight cost value of the DEs allocated to a storage device. A proof of
concept model has been developed and implemented for the storage schemes described here

for distributed multimedia environments.

1200

1100

1000

900

800

700

600 |- —

Final Cumulative Traffic Requirements

500 - -

400

s s s s s
5 10 is 20 25 30
Devi ce Numnmber

Figure 12: A sample data distribution with our allocation technique.

10 Conclusions

In this paper we have described the design of the storage and retrieval schemes in a multi-
media object manager with respect to the multimedia object model and storage allocation
strategies described in [1][2]. Although there are numerous issues in a multimedia object
manager, here we focus on the storage and retrieval schemes. We have presented descrip-
tions of the multimedia object model, the generation and assignments of the SEs to AUs,
determination of the SEs spanned by a retrieval request, clusterization and parallelization of
SEs spanned by a retrieval request, storage and retrieval structures, extension and reduction
of SEs, and the necessary updates to the storage structures. We developed our schemes with
a goal of inter-operatability with conventional UNIX file systems. Interactions via the file

systems have read-only access while the MOM has the capability to extend or reduce a DE.

References

[1] C. Y. Roger Chen, Kingsley C. Nwosu, P. Bruce Berra, Modeling and Storage
Allocation Strategies for Homogeneous Parallel Access Storage Devices in Real-Time
Multimedia Information Processing, to appear in the Proc. IEEE 5th International Conf.
on Computing and Information (ICCI), Sudbury, Ontario, Canada, May 1993.

[2] C.Y. Roger Chen, Kingsley C. Nwosu, P. Bruce Berra, Multimedia Object
Modeling and Storage Allocation Strategies for Heterogeneous Parallel Access Storage
Devices in Real-Time Multimedia Computing Systems, to appear in the Proc. 17th In-
ternational Computer Software and Applications Conf. (COMPSAC), Phoenix, Arizona,
November, 1993.

3]

[4]

[11]

[12]

[13]

[14]

Bell, C. G., The mini and macro industries, IEEE Computer, Vol. 17, No. 10, 1984,
pp- 14-30.

W. Myers, The Competitiveness of U.S.A. Disk Industry, IEEE Computer, Vol. 19,
No. 11, 1986, pp. 85-90.

Kim, M. Y., Synchronized Disk Interleaving, [EEFE Trans. on Computers, Vol. (C-35,
Vol. 11, 11/86, pp. 978-988.

Livny, M., Khoshafian, S., and Boral, H, Multi-Disk Management Algorithms,
Proc. 1987 ACM SIGMETRICS Conf. on Measurement and Modeling of Comp. Syst.,
pp- 69-77.

Chen, P. and Patterson, D., Maximizing Performance in a Striped Disk Array, Proc.
1990 ACM SIGARCH 17th Intern. Symp. on Comp. Arch., Seattle, WA, May 1990, pp.
322-331.

J. Zupan, Clustering of Large Data Sets, Technometrics, Vol. 29, Nov., 1987, pp. 497.

A.D. Bell, F.J McErlean, P.M. Stewart, Clustering Related Rules in Databases,
The Computer Journal, Vol. 31, June 1988, pp. 253-257.

J.S. Deogun, V.V. Raghava, T.K.W. Tsou, Organization of Clustered Files for
Consecutive Retrieval, ACM Trans. on Database Systems, Vol. 9, December 1984, pp.
646-671.

Maurice J. Bach, The Design of the UNIX Operating System, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1986.

S. R. Bourne, The UNIX Sytsem, Addision- Wesley, Reading, MA, 1983.

M. K. McKusick, W. N. Joy, S. J. Leffler, R. S. Fabry, A Fast File System for
UNIX, ACM Trans. Comput. Syst., 2(3), Aug. 1984, pp. 181-197.

K. Thompson, Unix Implementation, Bell System Technical Journal, 57(6), July 1978,
pp- 1931-1946.

